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This paper is a continuation of the first part and it is devoted to the study of 
Bell-type inequalities of order at least 3 in orthomodular lattices. We give some 
necessary and sufficient conditions for the validity of Bell-type inequalities of 
order 3 and also, more generally, for those of order n. 

This paper is a continuation o f  Dvure~enskij and L~nger (1995), hereafter 
referred to as [I]. Sections, theorems, and formulas are numbered in continua- 
tion o f  that work, starting with Section 8. References not listed in the present 
paper can be found at the end of  [I]. 

8. B E L L - T Y P E  I N E Q U A L I T I E S  O F  O R D E R  3 

In this section, we investigate Bell-type inequalities of  order 3. We show 
that these inequalities can entail a "Boolean"  character o f  a given propositional 
system. Such a character has the inequality 

p(a)  + p (b )  + p (c )  - p (a  ^ b) - p (a  ^ c) - p ( b  A c) <- 1 

fo r a l l  a , b , c ~ L  (8.1) 

Let p be a state on an O M L  L. If  there are a nonvoid  set l-l, an algebra 
9 ~ C_ 2 ~, a finitely additive probability measure P on if, and a mapping 3 z: 
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3For more details on L2(II, S, P), where P is finitely additive, see Dunford and Schwartz 
(1957, Chapter III). 
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L ~ L 2 ( ~ ,  9 ~ P )  such  that ,  fo r  al l  a ,  b ~ L, (i) E(z (a ) z (b ) )  = p ( a  A b)  and  
(ii)  z(a v b) = z(a)  + z(b)  w h e n e v e r  a • b, then  z is sa id  to be  a r a n d o m  
m e a s u r e  o f  the f i r s t  k ind  r e l a t ed  to p.  

T h e o r e m  8.1. Le t  p be  a state on  an O M L  L, and  let  n be  a p o s i t i v e  
in teger .  T h e n  the f o l l o w i n g  s t a t emen t s  are equ iva l en t :  

(i) p ( c o m ( a ,  b))  = 1 for  al l  a ,  b E L. 
(i i)  F o r p ,  (8.1)  ho lds .  

( i i i )  W e  have  

p(a )  + p (b )  + p (c )  - p ( a  ^ b) - p ( a  A C) -- p ( b  ^ c) 

+ p ( a ^ b A c ) < - -  1 

fo r  al l  a , b , c  ~ L  (8.2)  

( iv) p is d i s t r ibu t ive .  
(v) T h e r e  are  a B o o l e a n  a l g e b r a  B, a h o m o m o r p h i s m  h f r o m  L on to  

B, and  a (pos i t ive )  s ta te  P on  B such tha t  P(h (a ) )  = p (a )  for  any  
a c t .  

(vi)  T h e r e  is a r a n d o m  m e a s u r e  of  the  f i rs t  k ind  r e l a t ed  to p .  
(vi i )  T h e r e  ex i s t  real  n u m b e r s  c~, [3, % B wi th  0 < [3 <-- et _-_ 1, - o r  

- I --<',/ --< - -oq and  - 1  - a + [3 - ~/ - - < B - -  < -oL + [3 - ",/ 
such  that ,  for  al l  a ,  b ~ L, it  ho lds  that  

1 - ot + c~p(a) + oLp(b) + [3p(c) + ~p (a  A b) 

- [ 3 p ( a ^ c ) -  [ 3 p ( b A c )  + ~ p ( a A b / x c ) < - - -  1 

(vi i i )  T h e r e  ex i s t  rea l  n u m b e r s  cx, [3, ~/, B wi th  - 1 <-- o~ --< [3 < 0, - c x  
-----~/<- 1 - c q a n d - { x  + [ 3 -  ~/--< ~ - <  1 - o~ + [ 3 -  ~ / s u c h  
that,  fo r  al l  a ,  b ~ L, it  ho lds  that  

0 <-- - c x  + e~p(a) + c~p(b) + [3p(c) + ~p (a  A b) 

- [3p(a ^ c) - [3p(b ^ c) + Bp(a A b ^ c) 

( ix) p( f i (a l  . . . . .  a . ) )  = p(t2(at  . . . . .  an)) h o l d s  fo r  e v e r y  at  . . . . .  an 
L and  for  e v e r y  pos i t i ve  i n t ege r  n, i f  tl(Xl . . . . .  Xn) = t2(xb 

. . . .  Xn) is a l aw h o l d i n g  in any B o o l e a n  a lgeb ra .  4 
(x) F o r  e v e r y  n --> 1 and  for  e v e r y  f :  2 It ....... } ~ R ( f :  2 I1 ...... } ~ Z )  wi th  

f ( I ) p ( A a i ] ~ [ O ,  1] f o r a n y  a t  . . . . .  a n ~  { 0 , 1 }  Z 
IC{ I,...,n } \ i ~ l  / 

4By a term on an OML L we mean a mapping t: L" --~ L, where t(x~ . . . . .  x,,) is an expression 
built up by the variables x~ . . . . .  xn E L and the symbols (, v, A, ), 1, 0, 1. For example, if 
tj(x, y, z) = (x v y) ^ z and t2(x, y, z) = (x ^ z) v (y ^ z) for all x, y, z ~ L, then the equality 
t~ = t2 is a distributive law. 
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we have 

f(I)P(i~i\ a i ] ~ [ 0 , /  1] for any al . . . . .  a r i E L  2 
lc_{ 1,...,n} 

(xi) For every n --> 1 and for every f :  2 I1 ...... I __4 R ( f :  2 II ...... I --4 Z) with 

Y , f ( / )  ~ [0, 1] for  any K C  {1 . . . . .  n} 
ICK 

we have 

f (1)p(~t \  a i]~[O,]  1] for  any a~ . . . . .  a n a L  
t C{ l,...,n } 

(xii) p(a) <- p(a /x b) + p(a ^ b--) for all a, b E L. 
(xiii) p(b) + p(c) - p(a  /x b) - p(b  ^ c) - p(c ^ d)  + p(a ^ d)  <- 

1 for all a, b, c, d ~ L. 5 
(xiv) p is Jauch-Pi ron  and if a, b ~ L and p(a A b) = p(a ^ b -L) = 

0, then p(a) = O. 

Proof  It is evident that (v) ~ (i), (iv), (ix), and each of  these conditions 
implies (xii). 

(xi) ~ (ii), (iii), (vii), (viii). This is evident. 
(ii), (iii), (vii), (viii) ~ (xii). Put b = a • 
(xii) ~ (v). Calculate 

p(a v b) = p((a v b) , ' ,a) + p((a v b) A a • 

= p(a) + p((a v b) ^ a • ^ b) + p((a v b) A a • A b 1) 

= p(a) + p(b A a • = p(a) + p(b) - p(a ^ b) (8.3) 

Hence,  p is a valuation. Using the equivalence (iii) and (x) of  Theorem 4.1, 
we can find a modular  OML B, a homomorphism h from L onto B, and a 
positive subadditive state P on B such that P(h(a)) = p(a), for any a ~ L. 
We assert that B is a Boolean algebra. Indeed, for all a, b ~ L, com(h(a) ,  
h(b)) = h(com(a,  b)). In view of  (i) [(xii) implies (i)], P(com(h(a),  h(b))) = 
1, which entails that com(h(a),  h(b)) = lB. 

(v) ~ (vi). Due to the Stone representation theorem, we can assume 
that B is an algebra of  subsets of  a nonvoid set 12, and that P is a state on 
B. Define a mapping z: L --> L2(~,  B, P) via z(a) :=  Xh(a~, a ~ L. Then z is 
well defined and 

E(z(a)z(b)) = E(Xh(a)Xt,(b)) = P(h(a) N h(b)) = P(h(a A b)) = p(a A b) 

5This is an inequality of  C l ause r -Horne  type. 
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for all a, b ~ L. I f  a, b E L and a I b, then h(a) n h(b) = 0 and 

z(a v b) = Xh(avb) = Xh(a)nh(b) = Xh(a) -Jr Xh(b) = z(a) + z(b) 

(vi) ~ (xii). p(a) = E(z(a)z(b v b• = E(z(a)z(b)) + E(z(a)z(bi)) = 
p(a A b) + p(a A b J-) for all a, b E L. 

(v) ~ (xi). Follows from Theorem 3.4. 
(x) r (xi). Follows from Proposition 3.2. 
(xiii) r (i). Proved in Pulmannov~i (n.d.). 
(xiv) ~ (i). Let a, b ~ L and c := com(a, b). Define al :=  a ^ c I and 

bl :--- b ^ c • Then al ^ bl = al ^ b~ = 0, so that p(al) = 0. Similarly, 
p(bO = 0. Since al v bl = c l ,  the Jauch-Piron property of p entails p(c • 
= 0 .  

(v) ~ (xiv). Straightforward. �9 

From the last theorem we see that the any Bell-type inequality of order 
3 holds practically on every OML which has a "Boolean character" for a 
state p. It is worth saying that if L = L(H), dim H >-- 3, then not every Bell- 
type inequality of  order 3 holds for every Gleason state on L(H). 

We recall that if any Bell-type inequality of  order 3 holds for any state 
on an OML L, then it does not entail that L is a Boolean algebra. Indeed, 
modifying Example 4.2 and applying Lemma 6.5, we have the following 
example: 

Example 8.2. Let L0 be a stateless OML and B a Boolean algebra. Then 
any Bell-type inequality holds for any state on L = L0 • B, but L is not a 
Boolean algebra. 

For any finite subset M = {al . . . . .  a,} of  an OML L we define the 
commutator, com M, of  M via 

1 

corn M = V A a~) (8.4) 
j l  ,...,in=0 i=1  

w h e r e a  ~  a l , a  1 : =  a f o r a n y a  ~ L. I f M =  @, we put com M := 1. 

Theorem 8.3. Let M = {al . . . . .  a,} be a finite subset of an OML L 
and let p be a state on L. Any Bell-type inequality holds on the sub-OML 
L0(M) of L generated by M for p I L0(M) if and only if 

p(com M) = 1 (8.5) 

Proof Using (ix) of  Theorem 8.1, we find that (8.5) follows easily. 
Conversely, let (8.5) hold. Define 

J0(M) := {c E L0(M): c ~ (com M) • } (8.6) 
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Then Jo(M) is a p-ideal of  L0(M) (Pulmannov~i, 1985). 6 The relation --M on 
Lo(M) defined via (a v b) A (a/x b) -L e Jo(M), a, b e Lo(M), is a congruence 
on Lo(M), and, in addition, B := Lo(M)/--A4 is a Boolean algebra (Marsden, 
1970). If h is the canonical homomorphism from Lo(M) onto B, then the 
mapping P on B defined via P(h(a)) := p(a), a e Lo(M), is, in view of (8.5), 
a state on B. Using again (v) and (xi) of Theorem 8.1, we have the assertion 
in question, u 

Theorem 8.4. Let M be a nonempty subset of an OML L and let p be 
a state on L. Any Bell-type inequality holds in the sub-OML Lo(M) of L 
generated by M for p t Lo(M) if and only if 

p(com F)  = 1 

for any finite subset F on M. 

Proof. This is the same as that of Theorem 8.3 (see also Dvure6enskij, 
1993, Theorem 2.4.9); we only define 

n 

Jo(M) = {c E Lo(M): c --< V (corn Fi) • 
i = 1  

FiCM,]Fi I<c%I  <_i<_n<~} [] 

Theorem 8.5. Let L = L(H) and p be a state on L(H) of the form 

p(m) : ~ x, llPMx, ll 2, m L ( H )  
i 

where hi > 0 for any i, ~i Xi = 1, and {xi} is an orthonormal system of 
vectors in H. Let M = {M~ . . . . .  M.} be a finite set of closed subspaces of 
H. Then any Bell-type inequality holds in Lo(M) for p I L0(M) if and only if 

PM, . . .  e ,,xi = . . .  PM,,x  

holds for any xi and any permutation (it . . . . .  in) o f  (1 . . . . .  n ) .  

Proof Follows from Dvure~enskij (1993, Theorem 2.5.4) and Theo- 
rem 8.3. [] 

Theorem 8.6. Let M --- {a~ . . . . .  a,} be a finite subset of an OML L 
and let p be a state on L with support a0. Any Bell-type inequality holds in 
the sub-OML Lo(M) of  L generated by M for p I L0(M) if and only if 

a0 -- corn M 

6A nonempty subset J of an OML L is said to be a p- idea l  of L if (i) a v b E J whenever a, 
b e J , ( i i )  a E J w h e n e v e r a  e L , b  e J, a n d a - < b , ( i i i ) ( a v b  •  ~ J w h e n e v e r a  e 
J and b E L. It is possible to show that the relation --j  on L, defined via a --j  b iff (a v b) 
A (a ^ b) l ~ J (a, b e L), is a congruence on L (Kalmbach, 1983). 
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Proof Follows from the definition of the support and from Theorem 
8.3. �9 

Remark 8. 7. Theorems 8.3 and 8.5 are of great importance for the study 
of classicality and nonclassicality of a given system of events. It can happen 
that, for example, {al . . . . .  an} is a set of not pairwise commuting events, 
but p(com{al . . . . .  an}) = 1. Then aio : =  a i /x a ,  i = 1 . . . . .  n, where a = 
corn{a1 . . . . .  an}, are mutually compatible events in the interval OML Lio,a 1 
= {b ~ L: b ----- a}, and plLLo.4 is a state on Lt0,4. Therefore, any statistical 
information involved in {al . . . . .  an} remains the same for {al0 . . . .  , an0} 
in Lt0,4, and Lt0,4 can serve as a classical probability model. 

Remark 8.8. The commutator of any subset M of an OML L is defined via 

com M := A {com F: F C_ M, JF I < ~} (8.7) 

supposing that (8.7) exists in L. Varying the example of Poguntke (1980; see 
also Dvure~enskij, 1993, Example 2.4.20), we have the following result: Let 
Lj = {0, 1} and L2 = MO2. Let L0 := L~ ~ X L~ o, and let L be the sub-OML 
of L0 generated by all elements ({an}n, {bn}n), where either {n: a n ~ 0} U 
{m: bm -'/: 0} is finite or {n: an ~ 1 } U {m: b,, r 1 } is finite. If F is a finite 
subset of L, then com F = ({ 1 }n, {bn}n), where bn is either 0 or 1. Therefore, 
corn L does not exist in L. 

On the other hand, on L~ there is a unique state p~, namely p~(0) = 0, 
p t ( l )  = 1. If K is a finite subset of { 1, 2 . . . .  }, define a state p on L as 
follows: p(({an}, {b~}n)) := ~ pl(a~)/IKI for any ({an}n, {bn}n) ~ L. Then 
p(com F)  = 1 for any finite subset F of L, although com L does not exist 
in L. Therefore, the condition in Theorem 8.4 cannot be changed automatically 
to p(com M) = 1. 

9. BELL-TYPE INEQUALITIES OF ORDER n 

In the present section we shall deal with general Bell-type inequalities 
of order n. We recall that N := { 1 . . . . .  n }. 

Theorem 9.1. Let p be a state on an OML L, f :  2 N --> R, and assume 
that (i) or (ii) holds: 

(i) We have 

~ f ( I ) p ( m a i l - <  1 fora l l  at . . . . .  a n a L  
ICN \ i ~ l  / 

and there exist j, k E N, j 4: k, with f ( { j } )  = f({k}) = 
- f ( { j ,  k}) = 1 - f ( O )  > 0. 
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(ii) We have 

fo a,, Ol . . . . .  

and there exist j ,  k e N, j 4: k, with f ( { j } )  = f ({k})  = 
- f ( { j ,  k}) = -f(/21) < 0. 

Then p is subadditive. 

Proof I f  (i) holds, then consider the inequality ]~lc_Nf([)p(Aiel ai) ~-- 1 
for a j , . . . ,  an ~ L, with ai = 0 for  all i ~ N\{ j ,  k} and apply Theorem 4.1. 

The  case that (ii) holds is treated in a comple te ly  analogous way. �9 

Theorem 9.2. Let p be a state on an O M L  L, f :  2 N ----) 1{, and assume 
that (i) or (ii) holds: 

(i) We have 

~ f ( l ) p ( A  ai] <- I for  all a, . . . . .  a, e L 
ICN \i e I / 

and there exist j ,  k, m e N , j  r k r m 4: j ,  w i t h f ( { j } )  = 
f ({k})  = 1 - f ( O ) ,  and f ( {m})  = 
- f ( { j ,  m}) = - f ( {k ,  m}) > 0. 

(ii) We have 

0 < -- ~ f ( I ) p ( A  all f o r a l l  a, . . . . .  a , ~ L  
IC_N \i~I / 

and there exist j ,  k, m e N , j  4= k 4= m "/: j w i t h f ( { j } )  = f ({k})  
= - f ( Q ) ,  a n d f ( { m } )  = - f ( { j ,  m}) = - f ( {k ,  m}) < 0. 

Then p is distributive. 

Proof Consider  the case ai = 0 for  all i e N\{ j ,  k, m}, ak = af-, and 
apply Theo rem 8.1. u 

Theorem 9.3. Let p be a state on an O M L  L, al . . . . .  an e L, and 
assume that 

O ~ ~ (--l) 'I\Klp(A ail for all K C N  (9.1) 
KCICN \iel  / 

Then 

/ \ 
( - 1 ) l ' \ K ' p [ A a i | < - I  for  all K C _ N  (9.2) 

KCICN \ ieI  ] 



1032 Dvure~enskij and Liinger 

and (3.1) holds for all f :  2 N ---> R satisfying (3.2). 

Proof Calculate 

and 

X~CNKC~Icu(--1)'t\~Ctp(A ai) = ~, p(A all ~ ( -1)  '/\K' 
_ _ _  \ i E I  1C_N \ i E I  ] KCI 

~p(Aai) ~ (l;[)(-1)J= ~c_NP(iAtai)8~'= 1 ICN \i~I j=O 

Z (--1)"\K'p(A ail ~ f(J) 
KCN KCIC_N \i~l ] JC_K 

JCN ICN \iel JCKCI 

= ~ ] / ( S )  ~ p ai . (--1) j 
JCN JCICN j=0 

= p A  �9 J~N JC~ICN_ -- (iel ai) ~IJ= ~JCN f(J)P(/~\iEJ ai) 

Remark 9.4. (i) The Bell-type inequality (9.1) satisfies (3.2): 

( -  1) ~l\JI = 0 
JCICK 

if J, K C N and J ~ K, and 

I K\JI 
E (-1),,,J,= E JC_ICK j=0 

ifJC_KC_N. 
( i i)  I f  K C N and tKI ~ n - 1, then 

0 <-- Kc,c_N ~ (--1)'1'K'p(A ai) 

for any state p on L and all al . . . . .  a ,  E L. 
(iii) A state p on L is subadditive iff 

O<-- ~IC_{ 1,2t (-l)"lP(iA~tai) for all al ,  a 2 E L 

(see Theorem 4.1). 
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(iv) A state p on L is distributive iff 

0<-- ~ (-1)'"p(~lai / fo ra l l  al ,  a2, a3 ~ L 
1c{ 1,2,3} 

(see Theorem 8.1). 

Theorem 9.5. Let p be a state on an O M L  L. The fol lowing assertions 
are equivalent: 

(i) We have 

0 <- ~ (--l)lAXlp(Aai) 
KCICN \ i  E 1 

for all K _C N and for all al . . . . .  an E L. 
(ii) We have 

0 < - ~ f(l)p(A ai)<-1 
ICN kiwi  

for all al . . . . .  an E L and for all f :  2 N ~ R with (3.2). 

Proof Use Theorem 9.3 and (i) o f  Remark  9.4. n 

Theorem 9.6. Let p be a state on L, al . . . . .  a ,  E L, and f :  2 N ---> 2~ 
such that 

f(I), ~ f(1) ~ [0, II  
IEJs ICN 

for all ~ C_ 2 N with Q ~ At and N ~ J~. Then 

0 <-- ~ f(l)p(A all <--1 
iON \i~I ) 

Proof Put a : =  AT=l ai. Since p(a) <--p(Ai~ I ai) --< 1 for all I C N, we have 

f(t)<o f(l)>o 

ten \i~t 

- - < f ( ~ ) +  ~ f(l) + ( ~ f(l) + f(N)~(a) =: 7 
~:ICN O#IC/N 
f(1):~O f(l)<0 
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In view of  0 ~ p(a) <- 1, we have that [3 lies be tween 

f (O)  + ~ f(1) and ~ f ( I )  
O:/=ICN 1CN 
f(t)~o 

and ~/lies be tween 

f ( Q )  + f ( I )  and ~ f ( I )  
0 r  IC_N 
.f(l)>O 

According to our assumptions,  all four  sums lie be tween 0 and 1, which 
completes  the proof. �9 

Remark 9.7. (i) I f  p is a state on L, al . . . . .  a ,  ~ L, and f :  2 N --4 
[0, 2-n], then 

(ii) Let  p be a state on an O M L  L having two elements  a, b such that 
p(a) = p(b) = 1 and p(a A b) = 0. I f  f :  211'21 --> R such that 0 --< ~1c{1,2} 
f(I)p(Ai~i ai) ----- 1, for all al,  a2 ~ L, then ~ i ~ t f ( I )  E [0, 1] for  all A/t C 
211'21 with • ~ .kt and N ~ .kt. (Indeed, we h a v e f ( Q )  + f ({  1}) + f ({2} )  
= f(Q~) + f ({  1 })p(a) + f ({2])p(b) + f ( {  1, 2})p(a A b).) 

Theorem 9.8. For every n > 2, the subadditivity of  a state p on an O M L  
L is equivalent  to the fact that 

0 --< p(a2) + " '"  + p(a, -O - p(al ^ a2) - p(az ^ a3) 

. . . . .  p(a~-i A a,) + p(a, A at)  

for all al . . . . .  a ,  ~ L. 

Proof According to Theorem 4.1, the subaddit ivity of  p is equivalent  
to the fact that Sp(a, c) <-- Sp(a, b) + Sp(b, c) for all a, b, c ~ L. Since 
Sp(a, a) = 0 for all a ~ L, the validity of  the triangle inequality for  Sp is, 
for every f ixed n > 2, equivalent  to the assertion that 

Sp(al, a,) <<- Sp(al, a2) + Sp(az, a3) + " '"  + Sp(a,_l, a,) 

for all a l, . . . ,  a,, ~ L. �9 

Theorem 9.9. Let Ll . . . . .  Lm be OMLs.  Put L "= L1 • " ' "  • Lm and 
let f :  2 N ---> R. Then the fol lowing assertions are equivalent:  
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(i) We have 

f( l)p(A ai) ~ [O, 1] 
IC_N \ i e l  

for all states p on L and all al . . . . .  an e L. 
(ii) We have 

f ( l)p(A a l ) e  [0, 1] 
ICN \ i  e 1 

for all j = 1 . . . . .  m, all states p on Lj, and all ax . . . . .  a,, ~ L/" 

Proof Since the states p on L are exactly the mappings from L to 
[0, 1] of the form p((bl . . . . .  b,,)) = ~j~j o~/pj(bi) for all (bl . . . . .  bin) ~ L, 
where • :# J C {1 . . . . .  m}, ~X/> 0 for a l l j  e J, ~/~, a . /=  1, a n d p / i s  a 
state on Lj for every j E J, then (i) is equivalent to the assertion that 

S: = ~ f(I) ~ oLjpj(/~ ai) ~ [0,1] 
ICN j~J  \ i e I  / 

for all nonempty subsets J of { 1 . . . . .  m }, all families c% j e J, of positive 
reals with ]2j~: 0 9 = 1, all families p:,j e J, of states on L:, and all a j , . . . ,  
an E L j .  Since 

S= ~, otj ~ f(l)pj( /~ ai) 
j e J  ICN \ i c l  

the latter assertion is equivalent to (ii). i 

10. CONCLUDING REMARKS 

In the first part of this work we showed that if a Bell-type inequality 
of order n holds for a certain state in an orthomodular lattice, then it holds 
in any classical case (Proposition 3.1); the converse implication does not 
hold, in general. We have studied the connection between the validity of the 
original Bell inequality of order 2 in orthomodular lattices and different 
properties of the corresponding state. The criteria for the validity of this 
inequality are presented in Theorem 4.1. 

The validity of Bell-type inequalities of order 2 is studied (i) in the most 
important quantum logic L(H), the system of all closed subspaces of a Hilbert 
space H (Proposition 5.2), (ii) in ~ff~a(H), the system of all skew projections 
on H (Proposition 5.5), and (iii) in Krein spaces (Example 6.2). 
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The validity of the original Bell inequality for a family of states may 
entail the distributivity of the corresponding orthomodular lattice (Theo- 
rems 7.3-7.6). 

In the second part of this work we first presented criteria for the validity 
of Bell-type inequalities of order 3. They imply the distributive character of 
L with respect to the corresponding state (Theorem 8.1). Theorem 8.4 provides 
a criterion for the validity of Bell-type inequalities of order 3 in L by means 
of certain conditions on a generating set of L. The general discussion on 
Bell-type inequalities of order n is presented in Section 9. 

Finally, the following results should be pointed out: 

(i) For every Boolean algebra and for every state on it all Bell-type 
inequalities are valid (Section 3). 

(ii) This property does not characterize the class of Boolean algebras. 
This means that there exist OMLs L with a nonempty state space 
which have the property that all Bell-type inequalities hold for 
all states on L, but which are not Boolean algebras (Example 8.2). 
All Bell-type inequalities are valid for a state p on an OML L 
iff L is distributive with respect to p (i.e., if p is distributive) 
(Theorem 8.1). 

(iii) The original Bell inequality implies all possible Bell-type inequali- 
ties of order 2 (Theorem 4.1). 

(iv) There exist OMLs L and states p on L such that all Bell-type 
inequalities of order 2 are valid, but not all Bell-type inequalities 
of  order 3 hold (Proposition 5.2). 

(v) There exist single Bell-type inequalities of  order 3 (Theorem 8.1) 
and also of higher order (Theorem 9.2) which imply all possible 
Bell-type inequalities. 
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